M. Kazakova
A therosclerosis is a chronic inflammatory disease of the arteries that occurs during a complex interaction between risk factors (low-density lipoprotein cholesterol, obesity, diabetes mellitus, hypertension, smoking, etc.), components of the vascular wall, as well as immune and inflammatory cells. Various cells from intima, media, adventitia and perivascular adipose tissue not only make up an intact and normal arterial vessel wall, but also participate in the inflammatory reaction in atherosclerosis.
The process of atherosclerosis is initiated by activation of the endothelium, followed by a cascade of events (accumulation of lipids, migration and proliferation of smooth muscle cells, transformation of fibroblasts into myofibroblasts). The atherosclerotic plaque causes narrowing of the vessel and leads to cardiovascular complications. The article reviews the results of recent studies that reveal the role of various cells of the arterial vessel wall, as well as cells of innate and adaptive immunity in the development of atherosclerosis.
keywords: atherosclerosis, inflammation, fibroblasts, macrophages, smooth muscle cells.

for references: M. Kazakova. Cellular structure of atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2023, vol. 7, no. 1, pp. 1881–1884.

1. Lopez A.D., Mathers C.D., Ezzati M., Jamison D.T., Murray C.J.L. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet, 2006, vol. 367, no. 9524, pp. 1747–1757. doi: 10.1016/S0140-6736(06)68770-9.
2. Wang D., Wang Z., Zhang L., Wang Y. Roles of Cells from the Arterial Vessel Wall in Atherosclerosis. Mediators Inflamm , 2017, 8135934. https://doi.org/10.1155/2017/8135934.
3. Milutinović A., Šuput D., Zorc-Pleskovič R. Pathogenesis of atherosclerosis in the tunica intima, media, and adventitia of coronary arteries: An updated review. Bosn J Basic Med Sci, 2020, vol. 20, no 1, pp. 21-30. doi:10.17305/bjbms.2019.4320.
4. Gimbrone Jr M.A., García-Cardeña, G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res, 2016, vol. 118, no 4, pp. 620–636. https://doi.org/10.1161/CIRCRESAHA.115.306301
5. Tabas I., García-Cardeña G., Owens G.K. Recent insights into the cellular biology of atherosclerosis. J Cell Biol, 2015, vol. 209, no 1, pp. 13–22. https://doi.org/10.1083/jcb.201412052.
6. Waller B.F., Orr C.M., Slack J.D., Pinkerton C.A., Van Tassel J., Peters T. Anatomy, histology, and pathology of coronary arteries: a review relevant to new interventional and imaging techniques--Part I. Clin Cardiol, 1992, vol. 15, no 6, pp. 451–457. https://doi.org/10.1002/clc.4960150613.
7. Tellides G., Pober J.S. Inflammatory and immune responses in the arterial media. Circ Res, 2015, vol. 116, no. 2, pp. 312-22. https://doi.org/10.1161/CIRCRESAHA.116.301312.
8. Durham A.L., Speer M.Y., Scatena M., Giachelli C.M., Shanahan C.M. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res, 2018, vol.114, no 4, pp. 590–600. https://doi.org/10.1093/cvr/cvy010.
9. Bennett M.R., Sinha S., Owens G.K. Vascular Smooth Muscle Cells in Athe rosclerosis. Circ Res, 2016, vol. 118, no 4, pp. 692–702. https://doi.org/10.1161/CIRCRESAHA.115.306361.
10. Shanahan C.M., Crouthamel M.H., Kapustin A., Giachelli C.M., Arterial calcification in chronic kidney disease:key roles for calcium and phosphate. Circ Res, 2011, vol. 109, no. 6, pp. 697-711. https://doi.org/10.1161/CIRCRESAHA.110.234914.
11. Allahverdian S., Chehroudi A.C., McManus B.M., Abraham T., Francis G.A. Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis. Circulation, 2014, vol. 129, no 15, pp. 1551–1559. https://doi.org/10.1161/CIRCULATIONAHA.113.005015.
12. Misra A., Rehan R., Lin A., Patel S., Fisher E.A. Emerging Concepts of Vascular Cell Clonal Expansion in Atherosclerosis. Arterioscler Thromb Vasc Biol, 2022, vol. 42, no 3, pp. 74–84. https://doi.org/10.1161/ATVBAHA.121.316093.
13. Shankman L.S. Gomez D., Cherepanova O.A., Salmon M., Alencar G.F., Haskins R.M., Swiatlowska P., Newman A.A., Greene E.S., Straub A.C., Isakson B., Randolph G.J., Owens G.K. KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis. Nat Med, 2015, vol. 21, no 6, pp. 628–637. https://doi.org/10.1038/nm.3866.
14. Akhavanpoor, M., Gleissner, C., Akhavanpoor, H., Lasitschka, F., Doesch, A., Katus, H. (2018). Adventitial tertiary lymphoid organ classification in human atheroscle -rosis. Cardiovasc Pathol., 2018, vol. 32, pp. 8-14. https://doi.org/10.1016/j.
15. Eshghjoo S., Kim D.M., Jayaraman A., Sun Y., Alaniz R.C. Macrophage Polarization in Atherosclerosis. Genes (Basel), 2022, vol. 13, no 5, p. 756. https://doi.org/10.3390/genes13050756.
16. Mills C.D., Kincaid K., Alt J.M., Heilman M.J., Hill A.M. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol, 2000, vol. 164, no 1, pp. 6166–6173. https://doi.org/10.4049/jimmunol.164.12.6166.
17. Stöger J.L., Gijbels M.J., van der Velden S., Manca M., van der Loos C.M., Biessen E.A.L., Daemen M.J.A.P., Lutgens E., de Winther M.P.J. Distribution of macrophage polarization markers in human atherosclerosis. Atherosclerosis, 2012, vol.225, no 2, pp. 461-468. https://doi.org/10.1016/j.atherosclerosis.2012.09.013.
18. Bartlett B., Ludewick H.P., Misra A., Lee S., Dwivedi G. Macrophages and T cells in atherosclerosis: a translational perspective. Am J Physiol Heart Circ Physiol, 2019, vol. 317, no 2, pp. 375–386. https://doi.org/10.1152/ajpheart.00206.2019.
19. Robbins C.S., Hilgendorf I., Weber G.F., Theurl I., Iwamoto Y., Figueiredo J.-L., Gorbatov R., Sukhova G.K., Gerhardt L.M.S., Smyth D., Zavitz C.C.J., Shikatani E.A., Parsons M., van Rooijen N., Lin H.Y., Husain M., Libby P., Nahrendorf M., Weissleder R., Swirski F.K. Local proliferation dominates lesional macrophage accumulation in atherosclerosis. Nat Med, 2013, vol. 19, no. 9, pp. 1166–1172. https://doi.org/ 10.1038/nm.3258.
20. Libby P., Nahrendorf M., Swirski F.K. Leukocytes Link Local and Systemic Inflammation in Ischemic Cardiovascular Disease: An Expanded “Cardiovascular Continuum”. J Am Col Cardiol, 2016, vol. 67, no. 9, pp. 1091-1103. https://doi.org/10.1016/ j.jacc.2015.12.048.
21. Saranchina Y.V., Dutova S.V. et al. Kletochnyj sostav ateroskleroticheskih blyashek [Cellular composition of atherosclerotic plaques]. Sovremennye problemy nauki i obrazovaniya, 2018, no 1. https://doi.org/10.17513/spno.27373. (in Russian).
File extension: pdf (216.71 KB)