A.I. Kubarko, V.A. Mansurov, A.D. Svetlichny, L.D. Ragunovich
The objective of the research work was to develop devices and algorithm for synchronous recording of pulse waves and ECG for measuring the delay time of pulse waves in the branches of various arteries relative to the R wave on an ECG, and to carry out computer simulation of the pulse wave propagation process to determine the dependence of the pulse wave propagation velocity on branching and other hemodynamic and morphological parameters of blood vessels.
keywords: pulse wave, pulse wave propagation velocity, small arterial vessels, pulse wave propagation modeling

for references: A.I. Kubarko, V.A. Mansurov, A.D. Svetlichny, L.D. Ragunovich. Рulse waves рropagation in small vessels: measurement results and modelling approaches. Neotlozhnaya kardiologiya i kardioovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2020, vol. 4, no. 2, pp. 1037–1044

1. Shirwany N.A, Zou M-hui. Arterial stiffness: a brief review. Acta Pharmacologica Sinica, 2010, no. 31, pp. 1267-1276.
2. Safar M. E., Lacolley P. Disturbance of macro- and microcirculation: relations with pulse pressure and cardiac organ damage. Am J Physiol Heart Circ Physiol, 2007, vol. 293, pp. H1-H7.
3. Каtz J.А. Parchoniuk Е.V. Akimov N.S. Zhestkost’ sosudistoy stenki s pozizii povrezhdeniya soedinitel’noy tkani pri serdechno-sosudistych zabolevaniyach [The stiffness of vascular wall with position of damage connective tissue in cardiovascular deseases]. Fundamental Researches, 2013, no. 5, pp. 189-195. (in Russian).
4. Feihl F., Liaudet L., Waeber B., Levy B.I. Hypertension A Disease of the Microcirculation? Hypertension, 2006, vol. 48, pp. 1012-1017.
5. Heskens L.H., Kroon A.A., van Oostenbrugge R.J., Gronenschild E.H., Fuss-Lejeune M.M., Hofman P.A., Lodder J., de Leeuw P.W. Increased aortic pulse wave velocity is associated with silent cerebral small vessel disease in hypertensive patients. Hypertension, 2008, vol. 52, no. 6, pp. 1120-1126.
6. Lee Y-S. Kim K-S., Nam Ch-W., Han S-W., Hur S-H., Kim Y-N., Kim K-B., Lee J-B. Clinical implication of carotid-radial pulse wave velocity for patients with coronary artery disease. Korean Circulation J, 2006, vol. 36, no. 8, pp. 565-572.
7. Townsend R.R., Wilkinson I.B., Schiffrin E.L., Avolio A.P., Chirinos J.A., Cockcroft J.R., Heffernan K.S., Lakatta E.G., McEniery C.M., Mitchell G.F., Najjar S.S., Nichols WW., Urbina E.M., Weber T. Recommendations for improving and standardizing vascular research on arterial stiffness: a scientific statement from the American Heart Association. Hypertension, 2015, vol. 66, no. 3, pp. 698-722.
8. Susic D, Varagic J, Ahn J, Frohlich E.D. Crosslink breakers: a new approach to cardiovascular therapy. Curr Opin Cardiol, 2004, vol. 19, no. 4, pp. 336-340.
9. Trisvetova Е.L. Zaschita sosudov pri arterial’noy gipertenzii – shag k snizheniyu riska razvitiya serdechno-sosudistych oslozhneniy [Vascular protection in arterial hypertension - step to reduce the risk of cardiovascular complications]. Medical News, 2017, no.11, pp. 3-7. (in Russin).
10. LeBleu V.S., Macdonald B, Kalluri R. Structure and function of basement membranes. Exp Biol Med (Maywood), 2007, vol. 232, no. 9, pp. 1121-1129.
11. Bolster B.D., Serfaty J.N., Atalar E. In vivo measurement of pulse wave velocity in small vessels using intravascular MR. Magn Reson Med, 2001, vol. 45, no. 1, pp. 53-60.
12. Stettler C., Niederer P., Anliker M. Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: Mathematical model and prediction of normal pulse patterns. Ann Biomed Eng, 1981, vol. 9, pp. 145-164.
13. Stojadinović B, Tenne T, Zikich D, Rajković N, Milošević N, Lazović B, Žikić D. Effect of viscosity on the wave propagation: Experimental determination of compression and expansion pulse wave velocity in fluid-fill elastic tube. J Biomech, 2015, vol. 48, no. 15, pp. 3969-3974.
14. Taylor C.A. Humphrey J.D. Open problems in computational vascular biomechanics: hemodynamics and arterial wall mechanics. Comput Methods Appl Mech Eng, 2009, vol. 198, pp. 3514-3523.
15. Hollander, D. Durban, X. Lu, G. S. Kassab, Lanir Y. Constitutive modeling of coronary arterial media comparison of three model classes. J Biomech Eng, 2011, vol. 133, no. 6, pp. 061008.
16. Dobrin P.B., Caneld T. R. Elastase, collagenase, and the biaxial elastic properties of dog carotid artery. Am J Physiol, 1984, no. 2547, pp. H124-H131.
17. Holzapfel G.A. Biomechanics of soft tissue. The Handbook of Materials Behavior Models, 2001, vol. 3, pp. 1049-1063.
18. Simsek F.G., Kwon Y.W. Investigation of material modeling in fluid–structure interaction analysis of an idealized three-layered abdominal aorta: aneurysm initiation and fully developed aneurysms. J Biol Phys, 2015, vol. 41, pp. 173-201.
File extension: pdf (1.95 MB)