Shybekа Nаtallia, Gelis Lyudmila, Rusak Tatsiana
One of the main causes for operative mortality and perioperative complications after coronary artery bypass grafting is myocardial reper fusion injur y following the restoration of the coronar y circulation in the ischemic zone of the myocardium and characterized by myocardial, electrophysiological and vascular dysfunction. In order to identify the diagnostic signs of myocardial reperfusion injury after coronary artery bypass grafting, a prospective study was conducted, which included 89 patients with ischemic heart disease and forthcoming coronary artery bypass grafting either on-pump or off-pump. Postischemic myocardial dysfunction was assessed using transesophageal echocardiography, morphological and functional signs of myocardial reperfusion injury were detected using cardiac magnetic resonance imaging, moreover, the level of highly sensitive troponin, myoglobin, creatine phosphokinase-MB, metalloproteinase-2, and highly sensitive C-reactive protein was measured to assess the contribution of biomarkers to the development of reperfusion injuries. The obtained data allowed us to assess the morphological and functional characteristics of postischemic myocardial dysfunction and identify diagnostic signs of irreversible reperfusion injuries.
keywords: coronary artery bypass grafting, ischemia-reperfusion-induced myocardial dysfunction

for references: Shybekа Nаtallia, Gelis Lyudmila, Rusak Tatsiana. Diagnostic signs of myocardial reperfusion injury after coronary artery bypass grafting. Neotlozhnaya kardiologiya i kardiovaskulyarnye riski [Emergency cardiology and cardiovascular risks], 2021, vol. 5, no. 1, pp. 1167–1172.

References
1. Jones R.H., Hannan E.L., Hammermeister K.E., Delong E.R., O’Connor G.T., Luepker R.V., Parsonnet V., Pryor D.B. Identification of preoperative variables needed for risk adjustment of short-term mortality after coronary bypass graft surgery. The Working Group Panel on the Cooperative GABS Database Project. J. of the Am. Coll. of Cardiol, 1996, vol. 28, no. 6, P. 1478–1487.
2. Mirolyubova O.A., Dobrodeeva L.K., Averina M.YU., CHernov I.I., SHonbin A.N., Sen’kova L.V. Rol’ citokinov i apoptoza v razvitii postperfuzionnogo sindroma posle operaciy na otkry’tom serdce s iskusstvenny’m krovoobrasch’eniem [The role of cytokines and apoptosis in the development of postperfusion syndrome after open heart surgery with artificial blood circulation]/ Kardiologiya, 2001, vol. 41, no. 1, pp. 67–69. (in Russian).
3. Bokeriya L.A. Berishvili I.I., Sigaev I.YU. Revaskulyarizaciya miokarda: menyayusch’iesya podhody’ i puti razvitiya [Myocardial revascularization: changing approaches and ways of development]. Grudnaya i serdechno-sosudistaya hirurgiya, 1999, no. 6, pp. 102–112. (in Russian).
4. Van de Werf F., Bax J., Betriu A., Blomstrom-Lundqvist C., Crea F., Falk V., Filippatos G., Fox K., Huber K., Kastrati A., Rosengren A., Steg P.G., Tubaro M., Verheugt F., Weidinger F., Weis M. Management of acute myocardial infarction in patients presenting with persistent ST-segment elevation: the Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology. Eur. Heart J., 2008, vol. 29, no. 23, pp. 2909–2945.
5. Camici P.G., Prasad S.K., Rimoldi O.E. Stunning, hibernation, and assessment of myocardial viability. Circulation, 2008, vol. 117, no. 1, pp. 103–114.
6. Vatutin N.T., Kalinkina N.V., Esch’enko E.V., Kravchenko I.N. Reperfuzionnoe povre-jdenie miokarda [Reperfusion injury of the myocardium]. Kardi’ohi’rurgi’ya ta i’ntervenci’yna kardi’ologi’ya, 2013, no. 1 (3), pp. 15–22. (in Russian).
7. Dalen H., Thorstensen A., Aase S.A., Ingul C.B., Torp H., Vatten L.J., Stoylen A. Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur. J. of Echocardiogr, 2010, vol. 11, no. 2, pp. 176–183.
8. Poulsen S.H., Hjortshøj S., Korup E., Poenitz V., Espersen G., Søgaard P., Suder P., Egeblad H., Kristensen B.Ø. Strain rate and tissue tracking imaging in quantification of left ventricular systolic function in endurance and strength athletes. Scand. J. of Med. & Sci. in Sports, 2007, vol. 17, no. 2, pp. 148–155.
9. Nagueh S.F., Middleton K.J., Kopelen H.A., Zoghbi W.A., Quiñones M.A. Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J. of the Am. Coll. of Cardiol, 1997, vol. 30, no. 6, pp. 1527–1533.
10. Kramer C.M., Barkhausen J., Flamm S.D., Kim R.J., Nagel E. Standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J. of Cardiovasc. Magn. Reson, 2013, vol. 15, no. 1, pp. 91–101.
11. chikawa Y., Sakuma H., Suzawa N., Kitagawa K., Makino K., Hirano T., Takeda K. Late gadolinium-enhanced magnetic resonance imaging in acute and chronic myocardial infarction. Improved prediction of regional myocardial contraction in the chronic state by measuring thickness of nonenhanced myocardium. J. of the Am. Coll. of Cardiol, 2005, vol. 45, no. 6, pp. 901–909.
12. Glaveckaite S., Valeviciene N., Palionis D., Skorniakov V., Celutkiene J., Tamosiunas A., Uzdavinys G. Value of scar imaging and inotropic reserve combination for the prediction of segmental and global left ventricular functional recovery after revascularization. J. of Cardiovasc. Magn. Reson, 2011, vol. 13, no. 1, pp. 35–43.
13. Orn S., Manhenke C., Greve O.J., Larsen A.I., Bonarjee V.V.S., Edvardsen T., Dickstein K. Microvascular obstruction is a major determinant of infarct healing and subsequent left ventricular remodelling following primary percutaneous coronary intervention. Eur. Heart J., 2009, vol. 30, no. 16, pp. 1978–1985.
14. Tada Y., Yang P.C. Myocardial edema on T2-weighted MRI: new marker of ischemia reperfusion injury and adverse myocardial remodeling. Circ. Res, 2017, vol. 121, no. 4, pp. 326–328.
File extension: pdf (296.35 KB)